Migdal effect with neutral projectiles

Christopher M^cCabe

Some work with the MIGDAL Collaboration and Peter Cox, Matthew Dolan and Harry Quiney (Univ. of Melbourne)

Dark matter beyond the weak scale, Liverpool, 29 March 2023

Motivation

Neutral projectile scattering on atoms

Neutral projectile (Dark matter or neutron) $v_e \sim \alpha c$

Helium atom

Fine-structure constant: $\alpha = 1/137$

Christopher McCabe

Neutral projectile scattering on atoms

Neutral projectile (Dark matter or neutron) $v_e \sim \alpha c$

Helium atom

Fine-structure constant: $\alpha = 1/137$

Christopher McCabe

Low speed recoil:
 remain in ground state

2. High speed recoil:- double ionisation(electrons 'left behind')

Neutral projectile scattering on atoms

Neutral projectile (Dark matter or neutron) $v_e \sim \alpha c$

Helium atom

Fine-structure constant: $\alpha = 1/137$

Christopher McCabe

[*In the rest of this talk c=1]

'Migdal effect' electrons and the nucleus are coupled in atoms so perturbations of the nucleus can induce electronic transitions

Transition probability depends on the speed of the recoiling nucleus

Consider DM scattering with xenon

Consider DM scattering with xenon

m_{DM} = 1 GeV 'Normal' nuclear scattering

Christopher McCabe

Consider DM scattering with xenon

m_{DM} = 1 GeV 'Normal' nuclear scattering + Migdal effect (ionisation of 1 electron)

Christopher McCabe

Sub-GeV searches increasingly dominated by Migdal

Pre-2018 No Migdal limits Migdal effect in dark matter direct detection experiments, Ibe et al arXiv:1707.07258

Dominated by Migdal

Is there evidence for the Migdal effect?

Evidence? Yes, but...

Журнал экспериментальной и теоретической физики Вып. 10

A.B. Migdal's papers date bacl

Predicted effect in:

- 1. α , β decay
- 2. Neutral scattering

В работе лачей большой

T.9 X

При яд передачей бо Пон малых и нонизация вылетает из энергиях отд оболочках. При сте

НИЗАЦИЯ АТОМОВ ПРИ ЯДЕРНЫХ РЕАКЦИЯХ

A. Mura

она с электроном, крание порядка 10⁻²³ см², во втором — п ом много меньш

etne 1 + P. (r., r. ... Fr) от Iri поедставляет собой Ф-функции

движется со скоо

дается функцией Ф1 (r1, г2...г.). Так кал

W= | [\$\overline \mathcal{P}_1 e^{q I r_1} \$\overline dr_1 ... dr_f \$,

ственным, пр зация, обусловленная магнитным и специфическим ядерным взаимодействием нейтрона с электроном, крайне мала — соответствующее сечение в первом случае порядка 10⁻²⁸ см², во втором — порядка 10⁻³⁶ см²).

Effect has been observed скорость такой нонизация может быть очень просто рассчитана. Так как интересси случай боющих энергий отдачи и, следовательно, больших скорость пасесць Средского отдачи и, следовательно, больших электронных периодов. Следовательно, измессние скорости ядра происходит

M.S. Rapaport, F. Asaro and I. Pearlman K-shell electron shake-off accompanying alpha decay, PRC 11, 1740-1745 (1975) M.S. Rapaport, F. Asaro and I. Pearlman L- and M-shell electron shake-off accompanying alpha decay, PRC 11, 1746-1754 (1975) C. Couratin et al., First Measurement of Pure Electron Shakeoff in the β Decay of Trapped 6He+Ions, PRL 108, 243201 (2012)

передаче энергии Р много меньше размеров электронных осолочек, то каро можно считать не сместившимся за время удара. Для получения вероятности возбуждения или нонизации нужно исходную Ф-функцию атома разложить по собственным функциям движущегося ядра. Можно поступить несколько иначе, а именно перейти к системе координат, в которой ядро поконтся; тогда собственными функциями задачи будут обыч-

Effect has not been observed with neutral projectiles

Действительно, миожитель е на 1 ч представляет собой Ф-функцию центра инерции оболочки, который в старой системе координат покоился, а в новой движется со скоростью v, равной по величине и противоположной по направлению скорости ядра.

Пусть конечное состояние атома в рассматриваемой системе координат дается функцией Ф1 (r1, г2...г). Так как ядро за время удара не сместилось, то координаты влектронов в Ф, отсчитаны от той же точки, что и в Ф. Вероятность перехода в консчное состояние дается выражением:

Christopher McCabe

JOURNAL of PHYSICS

JOURNAL of PHYSICS

IONIZATION OF ATOMS ACCOMPANYING a- and S-DECAY

By A. MIGDAL (Received November 15, 1940)

The probability of ionization of the inner electron shells accompanying α- and β-decay culated. Also an estimation of the order of magnitude of ionization of the outer shells

1. Ionization accomanying β-decay

1. The probability of ionization of an ntom as a result of the β -decay can be without difficulty calculated if one makes use of the fact that the velocity of a β -electron is usually great as compared with velocities of atomic electrons. It is easily seen that in this case one can neglect the direct interaction of the β -decay electron with the atomic ones. The ionization is due to the fact that the neu-lear charge is changed within a time in-terval which is short comparing to atomic periods. $W \sim \frac{1}{h^2} \left(\frac{a}{a} + \frac{a}{y_c}\right) = \left(\frac{e}{h_c}\right)^2$ (the quantity $\gamma = E/mc^2$ disappears because the Lorentz contraction of the field is compensated by an increase of the latter. On the other hand, the probability of ionization by a suddens change of nuc-lear charge, as will be shown, is of the direct interaction to be small $\left(\frac{Z_{eff}e^2}{2}\right)^2 \ll 1$ atom as a result of the β -decay can be

The following estimation shows that the direct interaction can be actually neglect-ed. The probability of an electron tran-sition due to the direct interaction is according to perturbation theory:

 $\int V_{01}e^{i\omega_{01}t} dt |^2$ on is here the matrix element of the per-

Journal of Physics, Vol. IV. No. 5

 $\left(\frac{Z_{\text{eff}}e^{3}}{\hbar c}\right)^{2} \ll 1.$

The condition (2) has a simple meaning in the case of a K-electron, becaus $(Ze^{z}/\hbar c)^{z} = (V_{h}/c)^{z}$. Therefore, the direct tivistic correction. The condition (2) is pproximately valid even for K-elec 2. One can calculate the probability of

Hence the transition probability is of the

 $W \sim \frac{V^{a_{\tau}2}}{\hbar^{2}} \sim \frac{1}{\hbar^{2}} \left(\frac{\gamma e^{a}}{a} \cdot \frac{a}{\gamma c} \right)^{2} = \left(\frac{e^{a}}{\hbar c} \right)$

onization by means of a sudden chang of the nuclear charge in the following rbation energy; $\omega_{e1} = (E_1 - E_0)/\hbar$ —the fre-ency corresponding to the electron transi-with is of the order of target and the vertice of the order of the tion; it is of the order of atomic frequencies. not change when the decay electrons doe The time interval τ within which the de-emitted. Therefore, the transition probabi ay electron traverses electron shells is lity is equal to the much smaller than the atomic periods.

IONIZATION OF ATOMS ACCOMPANYING a- and B-DECAY

By A. MIGDAL

(Received November 15, 1940)

The probability of ionization of the inner electron shells accompanying α - and β -decay is calculated. Also an estimation of the order of magnitude of ionization of the outer shells is given.

1. Ionization accomanying β-decay

1. The probability of ionization of an ntom as a result of the β -decay can be without difficulty calculated if one makes use of the fact that the velocity of a 3-electron is usually great as compared with velocities of atomic electrons.

It is easily seen that in this case one can neglect the direct interaction of theβ-decay electron with the atomic ones. The ionization is due to the fact that the nuclear charge is changed within a time interval which is short comparing to atomic periods.

The following estimation shows that the direct interaction can be actually neglected. The probability of an electron tran-sition due to the direct interaction is according to perturbation theory:

$$W = \frac{\left| \int_{0}^{\infty} V_{02} e^{i\omega_{01}t} dt \right|^{2}}{\hbar^{2}} .$$
 (1)

5 Journal of Physics, Vol. IV. No. 5

Hence the transition probability is of the order

$$W \sim \frac{\gamma^2 \tau^2}{\hbar^2} \sim \frac{1}{\hbar^2} \left(\frac{\gamma e^2}{a} \cdot \frac{a}{\gamma c} \right)^2 = \left(\frac{e^2}{\hbar c} \right)^2$$

On the other hand, the probability of

(the quantity $\gamma = E/mc^2$ disappears because the Lorentz contraction of the field is compensated by an increase of the latter. ioniziation by a «sudden» change of nuclear charge, as will be shown, is of the order of $1/Z_{eff}^{2}$. Hence the condition for the direct interaction to be small

$$\left(\frac{Z_{\rm eff}e^{a}}{\hbar c}\right)^{2} \ll 1.$$

The condition (2) has a simple meaning in the case of a K-electron, because $(Ze^2/\hbar c)^2 = (V_{\hbar}/c)^2$. Therefore, the direct interaction is to be considered as a relativistic correction. The condition (2) is approximately valid even for K-electrons of uranium.

2. One can calculate the probability of ionization by means of a sudden change V_{o1} is here the matrix element of the per- of the nuclear charge in the following turbation energy; $\omega_{o1} = (E_1 - E_0)/\hbar$ the fremanner. The above estimation shows that quency corresponding to the electron transi- the W-function of atomic electrons does tion; it is of the order of atomic frequencies. not change when the decay electron is The time interval τ within which the de- emitted. Therefore, the transition probabicay electron traverses electron shells is lity is equal to the square of the coeffimuch smaller than the atomic periods. cient of expansion of the Y-function cor-

резко неадиабатически, так что Ф - функция электронов-не может измениться

(1)

(2)

Proposals with neutrons

New results from liquid xenon on Friday?

UCLA Dark Matter 2023

29 Marc UCLA US/Pacific	timezone	Ente	er your s
Overvie Scienti Call for Timeta	ew fic Programme r Abstracts Ible	Ved 29/03 Thu 30/03 Fri 31/03 Sat 01/04 All days Print PDF Full screen	Det
17:00	Migdal Search in L PAB- 1-425, UCLA Experimental resul Dr Jingke Xu	UX-ZEPLIN Dark Matter Experiment It on measuring the Migdal effect with neutron-induced nuclear recoils	at the

Results from LZ (D-D) and Lawrence Livermore National Lab (D-T)

In the UK: MIGDAL experiment

Christopher McCabe

MIGDAL experiment: aims

Create a dedicated experiment for the effect in nuclear scattering:

- Phase 1: Observe the effect in CF4 in high energy recoils
- Phase 2: Observe the Migdal effect in CF4 + noble gases

Create a dedicated experiment for the unambiguous observation of the Migdal

/ Nuclear recoil

Migdal electron From same vertex We are the only experiment aiming to observe the nuclear and electron recoils emerging from a common vertex

n high energy recoils in CF4 + noble gases

Schematic: Optical Time Projection Chamber

Camera: images GEM scintillation through viewport behind ITO anode. Readout of (x,y) plane

ITO anode: collects charge. Readout of (x,z) plane

PMT: Detects primary and secondary (GEM) scintillation Readout of depth (z) coordinate

Setup allows for 3D track reconstruction

Simulated Migdal event with a 10 keV electron & 250 keV fluorine recoil. Scaled-up by a factor of 3.

Pictures: Optical Time Projection Chamber

Field: 200 V/cm

Pictures: Optical Time Projection Chamber

We will operate at the NILE Facility at the Rutherford Appleton Laboratory, UK

D-D and D-T fusion generators installed in "shielding bunker"

High-yield neutron generators

- D-D: 2.47 MeV (10⁹ n/s)
- D-T: 14.7 MeV (10¹⁰ n/s)

Neutron collision rate (all processes) in our detector is ~50-100 Hz

We also need some neutrons...

Neutrons plus OTPC gives...

Simulated camera images of Migdal event

Linear-scale colour map

Christopher McCabe

Log-scale colour map

Real camera images of ⁵⁵Fe events

Tests with ⁵⁵Fe in pure CF₄

⁵⁵Fe gives 5.9 keV X-ray (calibration for the electron)

700 eV Auger electron from fluorine is visible.

Energy resolution is good (σ/μ ~ 12.7%).

σ: 12.71 %

Simulated ITO signals of Migdal event

Christopher McCabe

Real ITO signals of ⁵⁵Fe events

Tests with ⁵⁵Fe in pure CF₄

⁵⁵Fe gives 5.9 keV X-ray (calibration for the electron)

Independent estimator of the energy

Real signals with alphas

Track reconstruction with real data

Preliminary: still active area of development

Christopher McCabe

Present status

We have faced several challenges related to the neutron generators (had to postpone runs several times)

Current plan: first data-run before summer

New theory needed

Proposals cover orders of magnitude in v/α

[*In this talk c=1]

Migdal transition element

$\left\langle \Psi_{f}^{\{k\}} \middle| e^{im_{e}\mathbf{v}\cdot\sum_{a}\mathbf{r}_{a}} \middle| \Psi_{i}^{\{j\}} \right\rangle$

 $|\Psi_i^{\{j\}}\rangle$ describes the bound atomic-electrons wavefunction $\mathbf{v} =$ Nuclear recoil velocity describes the final state wavefunction (excitation, ionisation, etc) $|\Psi_{f}^{\{k\}}\rangle$

A. Migdal, J. Phys. Acad. Sci. USSR 4 (1941) 449-453 (See also E. L. Feinberg, J. Phys. Acad. Sci. USSR 4 (1941) 423)

Migdal transition element

 $\left\langle \Psi_{f}^{\{k\}} \left| e^{im_{e}\mathbf{v}\cdot\sum_{a}\mathbf{r}_{a}} \left| \Psi_{i}^{\{j\}} \right\rangle \right.$

Previous calculations made the 'dipole approximation':

Unclear if dipole approximation holds for neutron scattering processes (high v) - and only allows for single ionisation processes to be accounted for

> We keep the full exponential factor (sounds easy but lots of extra work!)

A. Migdal, J. Phys. Acad. Sci. USSR 4 (1941) 449-453 (See also E. L. Feinberg, J. Phys. Acad. Sci. USSR 4 (1941) 423)

Cox, Dolan, CM, Quiney, arXiv:2208.12222

Total probability results (with the exponential factor!)

Helium results (with GRASP+RATIP)

Previous calculations could only give the single-ionisation curve for $v/lpha \ll 1$

Nuclear recoil speed v/(α c)

Extending to bigger atoms (neon)

2.5

Sum

 $-p_v^0$ No transition — p_v^1 Single transition - p_v^2 Double transitions $-p_v^3$ Triple transitions

Theory framework generalises straightforwardly to larger atoms... ...but there are more electrons

Probability sums to 1 to $v \simeq \alpha$ but clearly deviates beyond

At higher speeds, quads, quintics, ... will contribute but VERY difficult to calculate

Without quads, quintics, ... will we have to give up on accurate predictions at higher NR speeds?

Without quads, quintics, ... will we have to give up on accurate predictions at higher NR speeds?

No! (for realistic experiments)

The impact of experimental thresholds

Realistic experiments have a **threshold** on the electron energy

Probability of two electrons above threshold is always suppressed, even at high NR speeds

The impact of experimental thresholds

Realistic experiments have a **threshold** on the electron energy

Probability of two electrons above threshold is always suppressed, even at high NR speeds

...but what about 1 hard electron and 1 soft electron? ...Indeed, this is a large correction!

...the contributions from 1 hard, 2 soft; 1 hard 3 soft, ..., will also be important

Nuclear recoil velocity v/α

Summing over all soft electrons

Formally, the sum over all 1-hard + N soft-electrons is

$$p_v(|\Psi_i^{\{j\}}\rangle \to |\chi_{k_1}X_{\text{soft}}\rangle) = \frac{1}{(N-1)!} \sum_{k_2,\dots,k_N}^{E < E_{\text{th}}} \left| \left\langle \Psi_f^{\{k\}} \right| e^{im_e \mathbf{v} \cdot \sum_a \mathbf{r}_a} \left| \Psi_i^{\{j\}} \right\rangle \right|^2$$

To a good approximation^{*}, this can be manipulated into the compact expression (which is straightforward to calculate numerically)

$$p_v(|\Psi_i^{\{j\}}\rangle \to |\chi_{k_1}X_{\text{soft}}\rangle) = \sum_{\alpha=1}^N \left| \langle \chi_{k_1} | e^{im_e \mathbf{v} \cdot \mathbf{r}} | \psi_{j_\alpha} \rangle \right|^2$$

We call this the 'semi-inclusive probability'

*Valid approximation if $v/\alpha \leq 8.6\sqrt{(E_{\rm th}/1 \text{ keV})}$

Semi-inclusive probability

Semi-inclusive probability gives accurate rates even at high NR-speeds

Application to neutron scattering [high-NR speed]

Neutron scattering rates (DD = 2.47 MeV)

Nuclear recoil energy E_R [keV]

Semi-inclusive rate is factor 1.6 higher than single+double ionisation

Background/Signal rates in the MIGDAL experiment

Component	Topology		D-D neutrons		D-T neutrons	
Component			515 keV	> 0.5	$515~\mathrm{keV}$	
Recoil-induced δ -rays	Delta electron from NR track origin	≈ 0	0	541,000	0	
Particle-Induced X-ray Emission (PIXE)						
X-ray emission	Photoelectron near NR track origin	1.8	0	365	0	
Auger electrons	Auger electron from NR track origin	19.6	0	$42,\!000$	0	
Bremsstrahlung processes [†]						
Quasi-Free Electron Br. (QFEB)	Photoelectron near NR track origin	112	≈ 0	288	≈ 0	
Secondary Electron Br. (SEB)	Photoelectron near NR track origin	115	≈ 0	279	≈ 0	
Atomic Br. (AB)	Photoelectron near NR track origin	70	≈ 0	171	≈ 0	
Nuclear Br. (NB)	Photoelectron near NR track origin	≈ 0	≈ 0	0.013	≈ 0	
Photon interactions						
Neutron inelastic γ -rays (gas)	Compton electron near NR track origin	1.6	0.47	0.86	0.25	
Random track coincidences	Photo-/Compton electron near NR track	≈ 0	≈ 0	≈ 0	≈ 0	
Gas radioactivity						
Trace contaminants	Electron from decay near NR track origin	0.2	0.01	0.03	≈ 0	
Neutron activation	Electron from decay near NR track origin		0	≈ 0	≈ 0	
Secondary nuclear recoil fork	NR track fork near track origin	_	~ 1	<u> </u>	~ 1	
Total background	Sum of the above components		1.5		1.3	
Migdal signal	Migdal electron from NR track origin		32.6		84.2	

[†] These processes were (conservatively) evaluated at the endpoint of the nuclear recoil spectra.

MIGDAL discovery potential?

Setups with D-D and D-T generators both have excellent discovery potential!

Estimated to achieve 5σ significance in less than one day of operation: 20 hours for D-D and 4.4 hours for D-T

[Even halving the signal and increasing the background uncertainty to 70%, we get:

 5σ discovery in ~ 7 calendar days for the D-D and ~ 7 hours for the D-T generator]

The Migdal effect is...

- an old effect (from 1940s) that is used for dark matter sub-GeV searches and is an active target for near-future neutron-beam experiments
- In the UK...
- we are building a detection platform to characterise the effect in multiple elements relevant to dark matter experiments

On the theory side, we have...

- extended previous calculations to the high nuclear-recoil speed regime

Our calculations...

- confirm the accuracy of existing calculations (lbe et al) for DM searches - are crucial to give accurate neutron-beam predictions

"Precise Predictions and New Insights for Atomic Ionisation from the Migdal Effect" Peter Cox, Matthew Dolan Christopher McCabe and Harry Quiney arXiv:2208.12222, PRD Data files of probabilities available now: <u>https://petercox.github.io/Migdal/</u>

Science and Technology **Facilities Council**

Thank you

"The MIGDAL experiment: Measuring a rare atomic process to aid the search for dark matter" H.M. Araújo et al arXiv:2207.08284

Backup

Migdal effect for neutral atoms

Transition matrix element first found by A. M

single-electron wavefunctions [e.g. as in Hartree-Fock], this can be expressed as:

$$\left\langle \Psi_{f}^{\{k\}} \middle| e^{im_{e}\mathbf{v}\cdot\sum_{a}\mathbf{r}_{a}} \middle| \Psi_{i}^{\{j\}} \right\rangle = \det(M) \quad \text{where} \quad M_{ba} = \left\langle \chi_{k_{b}} \middle| \exp(im_{e}\mathbf{v}\cdot\mathbf{r}) \middle| \psi_{j_{a}} \right\rangle \quad \text{J.D. Talman and A. M. F}_{Phys. Rev. A73,032722}$$

$$ple: Ground-state to ground-state transition in helium \quad \psi_{GS} = \psi_{1s}(\mathbf{r}_{1}, \mathbf{r}_{2}) \frac{1}{\sqrt{2}} \left(\left| \uparrow \right\rangle_{1} \middle| \downarrow \right\rangle_{2} - \left| \downarrow \right\rangle_{1} \left| \uparrow \right\rangle_{2}$$

$$posimate form (for illustration): \quad \psi_{1s}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \psi_{1s}(\mathbf{r}_{1})\psi_{1s}(\mathbf{r}_{2}) = \frac{Z_{e}^{3}}{\pi}e^{-Z_{e}(r_{1}+r_{2})} , \quad Z_{e} = \frac{27}{16}$$

$$posimate form (for illustration): \quad \psi_{1s}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \psi_{1s}(\mathbf{r}_{1})\psi_{1s}(\mathbf{r}_{2}) = \frac{Z_{e}^{3}}{\pi}e^{-Z_{e}(r_{1}+r_{2})} , \quad Z_{e} = \frac{27}{16}$$

$$posimate form (for illustration): \quad \psi_{1s}(\mathbf{r}_{1}, \mathbf{r}_{2}) = \psi_{1s}(\mathbf{r}_{1})\psi_{1s}(\mathbf{r}_{2}) = \frac{Z_{e}^{3}}{\pi}e^{-Z_{e}(r_{1}+r_{2})} , \quad Z_{e} = \frac{27}{16}$$

Exam

Appro

$$M_{12} = M_{21} = 0$$

$$M_{11} = M_{22} = \left(1 + \frac{m_e^2 v^2}{4Z_e^2}\right)^{-2} \qquad P_{\text{GS}\to\text{GS}}$$

.

1igdal:
$$\langle \Psi_f^{\{k\}} | e^{im_e \mathbf{v} \cdot \sum_a \mathbf{r}_a} | \Psi_i^{\{j\}} \rangle$$

A. Migdal, J. Phys. Acad. Sci. USSR 4 (1941) 449-453 (See also E. L. Feinberg, J. Phys. Acad. Sci. USSR 4 (1941) 423)

Key-point: When initial/final state wavefunctions expressed as anti-symmetric products of

Comparison of numerical methods

Our approach

Canonical Dirac-Hartree Fock method [Implemented in the GRASP+RATIP and BERTHA codes]

Impact: Model of atomic potential differs - expect *small* differences at low electron energies

We keep the full matrix element:

$$\det(M) = \left\langle \Psi_f^{\{k\}} \right| \exp\left(im_e \mathbf{v} \cdot \sum_{a=1}^N \mathbf{r}_a\right) \left| \Psi_i^{\{j\}} \right\rangle$$

Impact: Our calculation remains valid at large nuclear speed (NR energy); and we can calculate single ionisation, double ionisation, single ionisation + excitation, ...

GRASP [Jonsson et al, Comput. Phys. Commun. 177, 597 (2007); Jonsson et al, Comput. Phys. Commun. 184, 2197 (2013); Froese Fischer et al, Comput. Phys. Commun. 237, 184 (2019)], RATIP [Fritzsche, Comput. Phys. Commun. 183, 1525 (2012)], BERTHA [Quiney et al, Adv. Quantum Chem. 32, 1 (1998)], FAC [Gu, Canadian Journal of Physics 86, 675 (2008)]

Christopher McCabe

Ibe et al approach (arXiv:1707.07258)

Relativistic self-consistent mean-field [Implemented in the FAC code]

Makes the dipole approximation:

$$\exp\left(im_e \mathbf{v} \cdot \sum_{a=1}^{N} \mathbf{r}_a\right) \approx 1 + im_e \mathbf{v} \cdot \sum_{a=1}^{N} \mathbf{r}_a$$

Helium neutron scattering rates (DD=2.47 MeV)

Helium provides a sanity check of semi-inclusive probability across all energies - it works!

Fluorine neutron scattering rates (DT=14.7 MeV)

Semi-inclusive rate is factor 5.9 higher than single+double ionisation

Integrated rates

What shells are electrons ionised from?

Most likely configuration for single-ionisation: Hard electron from inner-shell Soft-electron from valence-shell

Most likely configuration for ionisation scenario with 1 hard- and soft-electrons:

Hard-electron from inner-shell with soft-electron from valence-shell

Comparison with Ibe et al

Comparison is at small v: when dipole approx is accurate

Agreement to ~25% in experimentally interesting parameter space

Event-rate map for MIGDAL experiment

Thresholds

Figure 2: Left – Track length in CF₄ at 50 Torr for electrons (mean projected range calculated with Degrad [48], CSDA range with ESTAR [51], and the practical range formula from Ref. [52]), and mean projected range for carbon and fluorine ions from SRIM [49]). Right – Electronic and nuclear energy loss rates (CSDA) along carbon and fluorine ion tracks in CF_4 at 50 Torr, calculated with SRIM and electronic energy loss for 20 keV electrons obtained with ESTAR; called out values are interim particle energies (in keV) remaining at that point in the track.

5

Secondary recoils per million primary ions (TRIM) created within 1 mm from the vertex in 50 Torr CF₄, when the "visible" energy of the secondary is 5–15 keVee.

Primary ion		Secondary ion			
Fluorine		Fluorine	Carbon		
	$500 \ \mathrm{keV}$	22,310	4,800	~70,000	
	400	$26,\!840$	$5,\!930$	per million	
	300	$36,\!640$	$7,\!640$	(worst case)	
	200	$56,\!130$	$1,\!263$		16
	170	67,040	$1,\!418$		14
	Carbon	Fluorine	Carbon		12
	$500 \ \mathrm{keV}$	6,250	1,210		ម្រី 10 ជា
	400	7,950	$1,\!610$		ge (R ₃) ~
	300	11,380	$2,\!310$		Banç
	200	17,310	3,700		2
	130	$26,\!120$	5,770		2

How many of these look like 5-10 keV electrons? Simulate several thousand more tracks using full chain, analyse image and recover track lengths (R_3) Can cut down to ~1 per 70,000 secondaries, retaining 87% electron detection efficiency (i.e. ~1 per million primary recoils).

Migdal in other elements

Migdal probabilities in other elements of interest for DM searches which we aim to explore, mostly in mixtures with CF_4

These probabilities are not too dissimilar (except for He)

Neutron scattering cross sections – total (σ_0) and bare-recoil processes (σ_s) plus Migdal probabilities for full neutron-induced NR spectrum, integrated down to zero NR threshold for electron thresholds of 0.5 keV and 5 keV (see C. McCabe's talk)

	2.47 MeV (D-D)			14.7 MeV (D-T)				
	σ_0, mb	σ_s , mb	P(>0.5 keV)	P(>5 keV)	$\sigma_0, { m mb}$	σ_s , mb	P(>0.5 keV)	P(>5 keV)
$^{4}\mathrm{He}$	3,239	3,239	2.98×10^{-3}	4.29×10^{-7}	1,017	1,017	9.01×10^{-2}	2.48×10^{-6}
^{12}C	1,613	$1,\!613$	6.01×10^{-3}	1.45×10^{-5}	1,379	1,321	$2.15\!\times\!10^{-2}$	4.09×10^{-5}
19 F	3,038	3,038	2.81×10^{-3}	2.01×10^{-5}	1,786	1,272	9.95×10^{-3}	$6.50\! imes\!10^{-5}$
$^{nat}\mathrm{Ne}$	$2,\!474$	2,465	2.62×10^{-3}	2.32×10^{-5}	$1,\!677$	1,055	$8.50 imes 10^{-3}$	$6.89\! imes\!10^{-5}$
nat Si	3,111	3,111	$2.39\! imes\!10^{-3}$	$2.87{\times}10^{-5}$	1,725	$1,\!150$	$1.10\! imes\!10^{-2}$	$1.25\! imes\!10^{-4}$
$^{40}\mathrm{Ar}$	$5,\!050$	5,050	2.18×10^{-3}	2.92×10^{-5}	2,818	2,754	6.85×10^{-3}	8.94×10^{-5}
nat Ge	3,401	$3,\!401$	1.64×10^{-3}	2.46×10^{-5}	3,227	$3,\!130$	5.47×10^{-3}	8.12×10^{-5}
$^{nat}\mathrm{Kr}$	3,825	3,825	$1.56\! imes\!10^{-3}$	$2.37{\times}10^{-5}$	3,741	3,717	4.65×10^{-3}	$7.03\! imes\!10^{-5}$
$^{nat}\mathrm{Xe}$	5,760	5,760	7.31×10^{-4}	$1.55\!\times\!10^{-5}$	4,871	4,861	2.80×10^{-3}	$5.95\! imes\!10^{-5}$

Energy-angle relations for D-D neutron scattering in 50% Ar/CF₄.

Blessing or curse? Auger emission in addition to Migdal electron

Neutron cross sections

