XLZD Cryostat Design

Progress Meeting – 31/07/2023

Design Parameters

Case	Vessel	Pressure (bar)		Temperature (°C)	Condition		
		Internal External					
1.1		4.15	Vacuum	-112 to 37	Operating condition		
1.2	Inner	Vacuum	1.01	<100	No water in tank + air between OVC/IVC + IVC under vacuum		
1.3	Vacuum 2.00		-112 to 37	Water between OVC/IVC + IVC under vacuum			
2.1	Vacuum 2.00 0 to 37		0 to 37	Operating condition			
2.2	Outer	Vacuum	1.01	<100	No water in tank		
2.3	2.00 1.01		0 to 37	Xenon between OVC/IVC + no water in tank			

External Case (OCV and ICV):

Internal Case (For ICV only):

Internal Case (For OCV only):

Theoretically doesn't need to support positive pressure, but practically needs some small internal pressure capacity for 2 reasons:

- In a failure event there is some pressure necessary for fluid to get out of the vessel and into the open air.
- It's difficult to find a low value pressure relief device. Such devices are typically not code stamped.

(Information from J Saba)

Therefore:

2 bar (assume external pressure case acts internally) –
1.01 bar (atmospheric pressure externally) = 0.99 bar

All "best guess" at this stage, but allows me to start doing some preliminary calculations

Estimate Cryostat Dimensions

3

LZ

Component

G3

Materials

Table Ti.2.3-1 Design strength values (N/mm²): commercially pure titanium and titanium alloys of material specifications ASTM B265, B338, B348, B363, B381, B861, and B862

Material	A2 Material	Minimum	Minimum	Values of <i>f</i> for design temperatures not exceeding						
grades	group	tensile	0.2% proof	20	50	100	150	200	250	300
	Rm Rp0.2 N/mm ² N/mm ²			°C						
1	51	240	138	80	77	62	49	38	30	25
2	51	345	275	115	112	98	83	72	63	55
2H ^a	51	400	275	133	130	113	96	83	71	58
3	52	450	380	150	146	124	102	85	71	62
7	51	345	275	115	112	98	83	72	63	55
7H ^a	51	400	275	133	130	113	96	83	71	58
9	53	620	485	207	205	197	181	164	148	140
11	51	240	138	80	77	62	49	38	30	25
12	52	485	345	162	159	148	130	116	106	101
16	51	345	275	115	112	98	82	72	62	55
16H ^a	51	400	275	133	130	113	96	83	71	58
17	51	240	138	80	78	62	49	38	30	25
26	51	345	275	115	112	98	82	72	62	55
26H ^a	51	400	275	133	130	113	96	83	71	58
27	51	240	138	80	77	62	49	38	30	25
28	53	620	485	207	205	197	181	164	148	140

^a Material is identical to the corresponding numeric grade (for example, Grade 2H = Grade 2) except for the higher guaranteed minimum tensile strength, and may always be certified as meeting the requirements of its corresponding numeric grade. In general over 99% of materials in these grades will meet the 400 MPa minimum tensile strength value.

Table Ti.3.6-3 E values for titanium alloys (modulus of elasticity)

Temperature °C	E N/mm ²
0	107 900
20	106 900
50	105 500
100	103 100
150	100 600
200	96 900
250	92 600
300	88 200

s is the factor relating f to effective yield point of material; for the purposes of **Ti.3.6**, s shall be taken to be **1.1**.

Values used

More investigation required

Ti.2.2 Materials for low temperature application

The alloys specified in **Ti.2.1.1** are not susceptible to brittle fracture and no special provisions are necessary for their use at temperatures down to at least -100 °C. Tensile and other strength values at room temperature may be used for operational service down to -30 °C.

OCV Wall Thickness

With no additional stiffening:

With 1 stiffener at the mid-plane:

With 2 equally spaced stiffeners:

Required cylinder wall thickness: **22mm** Approximate mass of cylinder: **3996kg** (Excluding heads and flanges) Required cylinder wall thickness: **17mm** Approximate mass of cylinder: **3266kg** (Excluding heads and flanges) Required cylinder wall thickness: **14mm** Approximate mass of cylinder: **2538kg** (Excluding heads and flanges)

5

OCV Wall Thickness

With the OCV flanges as stiffeners:

Required cylinder wall thickness: **13mm** Approximate mass of cylinder: **2356kg** (Excluding heads and flanges)

ICV Wall Thickness

Required cylinder wall thickness: 20mm Approximate mass of cylinder: 3283kg (Excluding heads and flanges)

Required cylinder wall thickness: **15mm** Approximate mass of cylinder: 2459kg (Excluding heads and flanges)

Required cylinder wall thickness: **13mm** Approximate mass of cylinder: 2130kg (Excluding heads and flanges)

П _

Stiffener Work... Ongoing..! (In the first instance to validate that the spreadsheet correctly analyses stiffener dimensions)

Compare with output of hand calculations:

OCV 2:1 Ellipse Head Thickness: 17mm Mass: 1398kg Internal Dished Height: 1000mm

4000 ID

ICV Torispherical Head Thickness: 18mm Mass: 1098kg Internal Dished Height: ~701.25mm

ICV 2:1 Ellipse Head vs. Torispherical Head

ICV 2:1 Ellipse Head Thickness: 15mm

3620 ID

ICV Bolted Flange (Preliminary):

Extracts from "XLZD Cryostat PD5500 Calculations" spreadsheet:

10

OCV Bolted Flange (Preliminary):

Extracts from "XLZD Cryostat PD5500 Calculations" spreadsheet:

Next Steps:

- Investigate what modifications would be required to the OCV flanges such that they pass the stiffener requirements.
- Gather some information on the constraints/requirements concerning the OCV flange position.
- Update the OCV flange drawings (as this will need fed back to manufacturers).
- Validate the flange calculations in PVElite (started..).
- Further investigate stiffening ring geometry and how to optimise their size.